
Process-local load calculation
For Node.js

Load is measured using accumulated sliding averages of CPU clock ticks spent with the
process in combination with number of queued/waiting events on the runloop.

Knowing how “loaded” a process have significance when for instance dealing with self-
balancing networks or clusters.

Use-case scenario

Letʼs imagine we have a host with 16 CPUs and we want to run a Node.js program on this
host. We start 16 instances of the program, binding each process (program instance) to
one specific CPU (affinity) so that each process runs on each CPU.

Our program keeps track of all program instances and their load. When a program
instance is asked to perform a task it first checks its own load, and if the load is below a
threshold value the program instance will accept the task and perform it. However, if the
program instanceʼs load is too high the program will select a less loaded program instance
and delegate the task to that instance.

Algorithm
• Keep accumulated values in process-local memory as V1-4
• Let K be a constant natural number representing the resolution of V4
• Let R be a positive time duration representing sampling interval
• Let X1 be the result of (1 / exp(R / 1min))
• Let X2 be the result of (1 / exp(R / 5min))
• Let X3 be the result of (1 / exp(R / 15min))
• At R relative time interval perform the following:

• Let T1 be the number of CPU ticks spent with the calling process
• If we have a previous value T2 perform the following:

• Let D be the result of (T1 - T2) — number of CPU ticks since our previous
sampling.

• Let V1 be the result of ((V1 × X1) + (D × (1 - X1)))
• Let V2 be the result of ((V2 × X2) + (D × (1 - X2)))
• Let V3 be the result of ((V3 × X3) + (D × (1 - X3)))
• Let E be the number of events waiting to be processed on the runloop
• Let V4 be the result of ((V4 × X2) + ((E × K) × (1 - X2)))

• Let T2 be the value of T1 for use during next sampling

Implementation
The current implementation is sampling load every 5 seconds (R=5) by default with a
event queue load resolution of 1000 (K=1000) and stores V1-4 as fixed-point integers (11
bit precision).

Process-local load calculation for Node.js! Rasmus Andersson (rasmus@notion.se, http://hunch.se/), Aug 11, 2010

mailto:rasmus@notion.se
mailto:rasmus@notion.se
http://hunch.se
http://hunch.se

C++ internal API
 m static ev_timer node::load_timer
— timer event used to schedule invocations of node::SampleLoad (.repeat=R).
 m static clock_t node::load_last_clock
— holds the last registered CPU tick count (T2)
 m static unsigned long node::load_accum[4]
— accumulated values (V1-4).
 m static int node::load_pendev_exp
— waiting events exponent
 m static unsigned long node::load_norm
— normal load updated by node::SetLoadSampleInterval.
 m static unsigned int node::load_exp_1min
— 1 minute exponent updated by node::SetLoadSampleInterval (X1).
 m static unsigned int node::load_exp_5min
— 1 minute exponent updated by node::SetLoadSampleInterval (X2).
 m static unsigned int node::load_exp_15min
— 1 minute exponent updated by node::SetLoadSampleInterval (X3).
 f static void node::SampleLoad(struct ev_loop*, ev_timer*, int)
— take a sample of current load and update V1-4.
 f static void node::SetLoadSampleInterval(ev_tstamp)
— set sampling interval (and possibly start or stop node::load_timer).

JavaScript API
process.load -> Array(4) — read-only property which returns the current load values as
floating-point precision numbers. [1min load avg, 5min load avg, 15min load avg, 5min
queued evs avg]
process.loadSampleInterval <-> uint32 — read-write property which controls how often
process load is sampled and updated, in milliseconds. Setting this to 0 (zero) has the
effect of disabling load sampling. Defaults to 5000.

Example

In this interactive session we illustrate how the load sampling rate can be read and
manipulated as well as reading the load averages.

node> process.loadSampleInterval
5000
node> process.load
[0.0000354, 0.0000076, 0.0000024, 0]
node> process.loadSampleInterval = 1000
1000
node> setInterval(function(){ for(var c=100000;--c;){ Math.pow(123456, 123456); } }, 1);
{ repeat: 0, callback: [Function] }
node> process.load
[0.329499, 0.078633, 0.034458, 0.075]
node> ^C

Process-local load calculation for Node.js! Rasmus Andersson (rasmus@notion.se, http://hunch.se/), Aug 11, 2010

mailto:rasmus@notion.se
mailto:rasmus@notion.se
http://hunch.se
http://hunch.se

Test and proof
This simple test program generates load in a sine fashion (load pulsates over time):

var n = -(Math.PI/2), work = 0;
setInterval(function(){
 work = (Math.sin(n += 0.007) + (Math.PI-2)) / (Math.PI-1);
 for (var x,i=0;i<Math.round(work*4000);i++) {
 try { require('fs').readFileSync(__filename+'-'+i, 'utf8'); } catch(e) {}
 for (x=0;x<Math.round(work*4000)/2;x++) Math.sqrt(1234);
 }
}, 100);
setInterval(function(){
 console.log(work.toFixed(3)+', '+
 process.load.map(function(v){ return v.toFixed(3); }).join(', '));
},process.loadSampleInterval);

By running (modified versions of) this program and plotting its output we visualize how the
load values behave over time during high but pulsating load.

In figure 1 the program have a average high load with low dips.

In figure 2 the program oscillates between high and low load, which eventually will bring
the load values to about 50%. Notice how the 1 minute average is naturally lagging.

0

0,3

0,5

0,8

1,0

Figure 1

A
m

p
lit

ud
e

Time 0–5.25 minutes

Work load 1 min avg load 5 min avg load 15 min avg load

0

0,25

0,50

0,75

1,00

Figure 2

A
m

p
lit

ud
e

Time 0-15 minutes

Work load 1 min avg load 5 min avg load 15 min avg load 5 min avg evs

Process-local load calculation for Node.js! Rasmus Andersson (rasmus@notion.se, http://hunch.se/), Aug 11, 2010

mailto:rasmus@notion.se
mailto:rasmus@notion.se
http://hunch.se
http://hunch.se

